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Abstract 

Cancer immunotherapy aims to modify and improve the immune system’s fight against cancer, it is a highly promising 

and evolving field. It is effective at treating a wide range of cancers, suppressing tumor growth and improving survival 

rate of cancer patients. Despite the promise and fervor around cancer immunotherapy, many challenges have limited 

their widespread use and efficacy. In this review article, we consider novel cancer immunotherapies, encouraging 

clinical trials and innovative strategies employed in developing safe and effective cancer immunotherapies. It is safe 

to say that cancer immunotherapy has revolutionized cancer therapy, but there are hurdles and challenges (toxicity 

concerns being the most notable) that must be overcome for safer and more effective treatment strategies. The battle 

against cancer is an arduous and prolonged affair. We aim to point out what we have achieved in recent times and 

outline potential strategies to mitigate our losses and chart a course of victory.  
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Introduction 

Cancer, normal cells in mad pursuit of immortality, 

causing unprecedented mortality and affecting so many 

families, remains a thorn in the flesh despite numerous 

and varying onslaughts on it. The focus on cancer 

treatment research has shifted from surgery, 

radiotherapy, and chemotherapy to immunotherapy (1). 

The immune system has the ability to identify and get 

rid of rogue cells. Cancer can develop when rogue cells 

pick up mutations that allow them to avoid the immune 

system (2). These mutations enable the cancer cells to: 

down-regulate tumor antigen MHC I expression; 

suppress effector T-cells through increased checkpoint 

ligands; aid regulation of immune cells through 

activation of suppressor immune cells and molecules; 

and nurture a hostile tumor microenvironment (3). The 

approval of several immunotherapies for the treatment 

and management of many cancers (majorly 

haematological malignancies) has generated much 

interest and promise in the endless possibilities cancer 

immunotherapies possess (1). But many roadblocks 

limit their widespread adoption and efficacy in many 

tumors, and we still have a long way to go. Newer 

strategies and modifications to cancer 

immunotherapies aim to mitigate these challenges, 

inadvertently boosting the immune system’s capacity 

to remove malignancies and improving the safety 

profile of immunotherapies. Researchers are 

optimizing existing immunotherapies with molecular 

technologies, newer sequencing tools, the evaluation of 

other immune cells or molecules, and the discovery of 

novel tumor target antigens. The explorative and 

progressive nature of scientific research ensures 

endless possibilities in cancer immunotherapy. In this 

article, we review recently approved cancer 

immunotherapies and outstanding clinical trials (CTs), 

their challenges, and potential ways of optimizing 

cancer immunotherapy. 

Antibody Therapy and Immune Checkpoint 

Inhibitors (ICIs) 

Antibodies are an essential part of the body’s immune 

defense system. In certain conditions, antibodies can 

become ineffective or insufficient, hence the 

development of specific and effective antibodies in 

vitro (4). This has led to the emergence of antibody 

diagnostics and therapeutics,  which include 

monoclonal antibodies, pro-antibodies, antibody-drug 

combinations, and bi- and tri-specific antibodies (4). 

Many diseases, most notably cancer, have benefited 

significantly from the use of antibody-based treatments 

(5). They have demonstrated success in eliminating or 

suppressing many tumors, but it is not without 

limitations. In this section, we consider newly 

approved antibody-based therapies and efforts made to 

mitigate challenges encountered with this form of 

cancer therapy. 

Monoclonal antibody 

Monoclonal antibodies (mAbs) are antibodies that 

possess the same receptor and are produced from the 

same B-cell line. mAbs have found use in several 

immunotherapies, either in their soluble form or bound 

to a membrane. Several mAbs that target overexpressed 

growth factors, CD20, immune checkpoints, and CD3 

have been authorized for the treatment of cancer by the 

Food and Drug Administration (FDA). Antibodies are 

being developed for newly discovered tumor-specific 

antigens (TSA). Recently, mAbs (dinutuximab and 

naxitamab) against disialoganglioside GD2 have been 

approved for treating neuroblastoma (6). This has 

increased the survival rate of neuroblastoma patients, 

but relapse has been observed in 50% of patients (6). 

Monoclonal IgE antibodies that target chondroitin 

sulfate proteoglycan 4 (CSPG4), which is implicated in 

melanoma, induce all IgE effector functions against 

melanoma in human xenograft models (7). All 

antibodies approved for cancer therapy are IgG; other 

antibodies are now being trialed, most notably IgE, 

with encouraging outcomes from CTs. 

Bispecific antibodies (BsAbs) 

BsAbs possesses the ability to bind to two specific 

antigens, which improves its specificity. BsAb can 

function in diverse ways; it helps bind immune cells to 

tumor cells, bind to certain molecules to reduce their 

expression and block immune checkpoints (8). Clinical 

BsAb can target either an antigen and CD3 in T-cells 

or CD3 and immune checkpoint molecules to enhance 

T-cell activation (the latter combination has 

demonstrated significant efficiency at T-cell 

activation) (9). BsAbs that target tumor antigens and 

CD3 molecules are mostly used for hematological 

malignancies. Recently, BsAb, mosunetuzumab-axgb, 
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and teclistamab-cqyv have received FDA approval for 

treating refractory follicular lymphoma and refractory 

multiple myeloma, respectively (10,11). 

Mosunetuzumab binds to CD20 on follicular 

lymphoma cells and CD3 on T-cells, which aids in the 

destruction of the lymphoma cells (10), while 

Teclistamab binds to B cell maturation antigen 

(BCMA) on myeloma cells and CD3 on T-cells, 

leading to an effective T-cell response against 

myeloma cells (11). Early in 2022, the FDA granted 

approval for tebentafusp-tebn usage, which binds to 

CD3 on T-cells and the gp100 peptide-HLA complex 

instead of the tumor antigen on cancer cells, for 

metastatic uveal melanoma (12). Cadonilimab, a BsAb 

that targets PD-1 and CTLA-4, received approval in 

China for relapsed or metastatic cervical cancer (13). 

MEDI5752 and ABL501 are some of the BsAb directed 

against immune checkpoints in clinical trials, while 

HLX301 targets molecules expressed on exhausted T-

cells and natural killer (NK) cells (13).  

Other combinations can be explored to fully maximize 

BsAb. One of which, amivantamab-vmjw, 

simultaneously blocks multiple growth factor signaling 

molecules to limit resistance. It has been authorized for 

use in metastatic non-small cell lung cancer (NSCLC) 

patients (14). Two bispecific T-cell engagers (BiTEs), 

epcoritamab-bysp and Glofitamab-gxbm, received 

approval by the FDA in 2023 for refractory diffuse 

large B-cell lymphoma (DLBCL) and high-grade B-

cell lymphoma patients. They bind to CD3 on T-cells 

and CD20 on lymphoma cells or healthy B-cells, 

leading to the activation of T-cells and subsequent 

destruction of these cells (15). Pasotuxizumab, a BiTE 

antibody that binds to both prostate-specific membrane 

antigen (PSMA) on prostate cancer cells and the T-cell 

receptor (TCR) CD3, showed promise during CTs in 

reducing the tumor. It is being modified and clinically 

tested to overcome the short half-life and neutralize 

Abs against it (16) (Figure 1). 

 

 

Figure 1. An overview of the mechanism of action of bispecific antibodies (9). 

507 



P. Yiran Ntasin, et al.                                                              Journal of Current Oncology and Medical Sciences 

 

Antibody-drug conjugates (ADC) 

ADC are cytotoxic agents conjugated with tumor 

antigen-specific antibodies, leading to destructive 

effects on targeted tumor cells (17,18). About 10 ADCs 

have received FDA approval for mostly hematological 

cancers, while about 80 ADCs are in development (19). 

The major challenge with ADCs is the tendency to 

attack body cells expressing the target antigen. This 

challenge is being addressed by extensive screening of 

the target antigen, unmasking of paratopes in tumors by 

TME enzymes, targeting antigens exclusively located 

in the TME, and adoption of novel TSA (20). The 

following ADC modifications are actively being 

explored to increase its efficiency: target antigen 

choice, chemistry of the linkers, cytotoxic agents with 

greater efficiency, enhancements of conjugation 

techniques, and better ADC internalization (5). In 

October 2022, the FDA approved Elahere, an ADC that 

targets folate receptor alpha (FRα) to treat ovarian, 

fallopian tube, and peritoneal cancers that are resistant 

to platinum chemotherapy and express FRα (21). 

Sacituzumab govitecan, containing anti-Trophoblast 

cell-surface antigen (TROP-2) Ab and the 

antineoplastic drug SN-38, has been recently 

authorized for triple-negative breast cancer (TNBC) 

and metastatic hormone receptor (HR)+, human 

epidermal growth factor 2 (HER2)-negative breast 

cancer (22,23). Sacituzumab govitecan is highly 

effective at targeting cancer cells and releasing its toxic 

payload (23). 

Immune checkpoint inhibitors (ICIs) 

Immune checkpoints regulate the immune system to 

protect against an uncontrolled immune response. 

Cancer uses this mechanism of regulation to prevent an 

immune attack on it (5). FDA authorized mAbs are 

available that block immune checkpoints (most notably 

programmed cell death 1 ligand 1 (PD-L1) 

(atezolizumab, avelumab, and durvalumab), 

programmed cell death protein 1 (PD-1) 

(pembrolizumab, nivolumab, and cemiplimab), and 

cytotoxic T-lymphocyte-associated protein 4 (CTLA-

4) (ipilimumab, tremelimumab)), thereby allowing 

immune cells to attack cancerous cells (24,25). These 

approved antibodies have also been combined for 

higher efficacy, but only FDA-approved combinations 

are available for use. Poor lymphocyte tumor 

infiltration and T-cell activation are some of the 

challenges faced with this approach; coupling the anti-

PD-L1 mAbs with photothermal agents has proven to 

be effective in overcoming this challenge (26). The 

FDA authorized the combo drug Opdualag in March 

2022, a combination of two ICI antibodies, nivolumab 

and relatlimab-rmbw, which block PD-L1 and 

lymphocyte activation gene 3 (LAG3) activity, 

respectively. It is used for metastatic melanoma (27). 

CD24 is another immune checkpoint target; it is 

involved in B and T-cell regulation (28,29), cell 

migration (30), inhibition of phagocytosis, and 

crucially contributes to the development of tumors 

(31). Overexpression of CD24 has been observed in 

many cancers (31). mAbs targeting CD24 have been 

approved for use; ALB9, G7, and SWA11 mAbs have 

all limited various types of cancer growth and 

metastases (32,33). They have also been used in 

conjunction with chemotherapy and other 

immunotherapies. Docosahexaenoic acid (DHA) also 

reduces the manifestation of PD-L1 in cancer cells by 

degrading the PD-L1 ubiquitin-proteasome and 

promoting C5N5-dependent PD-L1 degradation, 

resulting in reduced PD-L1-mediated 

immunosuppression in tumor models (34). Recently, 

another immune checkpoint target, Galectin-9 (an 

immunosuppressive regulator), has also been targeted 

in CTs. Inhibition by mAbs is done in conjunction with 

Ataxia telangiectasia mutated (ATM) inhibition, which 

leads to remarkably suppressed tumor growth in mouse 

(35). Triggering receptors expressed on myeloid cells 2 

(TREM2) on monocyte-derived macrophages have 

been shown to cause NK cell dysfunction in lung 

cancer. mAb TREM2 inhibtion coupled with an NK 

cell stimulator restores antitumor immunity in mice 

(36). mAbs against some innate immune checkpoints, 

co-inhibitory molecules, and co-stimulatory agonists 

have also been explored, but toxicity issues have 

hampered progress (37,38). 

Antibody-based therapies are stable, specific to the 

target protein, and can induce antibody-dependent T-

cellular cytotoxicity (ADCC) by innate immune cells 

(39,40). The challenges encountered in antibody-

related cancer therapy include tumor antigen mutation, 

immune-related adverse effects, activation of other 

growth signaling pathways by tumor cells, hostility of 

the tumor microenvironment (TME), poor antibody 
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penetration, few TSA to target, immune checkpoints, 

and system toxicity due to the ubiquitous nature of the 

target antigen (5,41). Antibody combination therapies 

with other cancer therapies, wider screening for TSA, 

and effective antibody delivery systems can help 

eliminate some of these challenges (5). The most 

common way of surmounting the systemic toxicity 

challenges due to the ubiquitous nature of most target 

antigens is masking the antibodies to avoid binding to 

normal cells. Once in the tumor environment, the 

antibodies are unmasked by tumor protease, thereby 

activating their therapeutic functions (42). Reduced 

system toxicities have been confirmed when this 

strategy is used, as evidenced in anti-CTLA4 DVD-Ig 

(43). Other drugs under CTs include pacmilimab for 

anti-PD1-L1, CX-904, EGFRxCD3, and BMS-986249 

for anti-CTLA4 (5,44). Novel tumor-specific antigens 

(neoantigens) are actively being investigated for 

different types of cancers in order to enable the testing 

and development of immunotherapeutic solutions. 

Circulating tumor DNA (ctDNA), major 

histocompatibility complex (MHC)-II expression on 

tumor cells, and gene expression profiles (GEPs) are 

being considered in TNBC (45). While research is also 

ongoing to develop and test mAbs and BsAb against 

six-transmembrane epithelial antigen of prostate 

(STEAP), human carcinoembryonic antigen-related 

cell adhesion molecule 5 (CEACAM5) and delta-like 

protein 3 (DLL3) expressed in different types of 

prostate cancer (46,47). Additionally, studies are being 

conducted to ascertain the effectiveness and safety of 

inhibiting the immune checkpoint B7-H3, which is 

significantly expressed in neuroblastoma, as a 

treatment option (48). Preclinical and clinical studies 

using mAbs against anaplastic lymphoma kinase 

(ALK) for neuroblastoma are already in motion (49). 

The innovative and explorative research methods for 

improving cancer antibody therapy are commendable 

and will help increase the diversity of treatment 

options. 

Adoptive T-Cell Therapy 

Adoptive T-cell Therapy (ACT) uses normal or 

engineered T-cells to identify a particular antigen on 

the tumor cells and eliminate them (50). ACT aims to 

expand and equip T-cells with the necessary battle 

armaments to eliminate elusive cancer cells (51). ACT 

has brought relief and remission to many cancer 

patients, mainly those with hematological 

malignancies, but it has yet to find therapeutic use in 

solid tumors (52). The main forms of ACTs are tumor-

infiltrating lymphocytes (TILs) therapy, engineered T-

cell receptor therapy (TCR-T), and chimeric antigen 

receptor (CAR)-T-cell therapy (50). 

TIL therapy 

TILs was the first ACT to be developed and adopted. It 

involves the harvesting and isolation of mainly T-cells 

exposed to tumor antigens from metastatic lesions, 

expanding them, and reinfusing them with repeated 

doses of interleukin-2 (IL-2) into cancer patients (1). 

Steve Rosenberg was the first to experiment with this 

therapy in murine models; it was later clinically trialed 

on metastatic melanoma patients with encouraging 

results (53). The effort to extend TIL therapy is 

currently being expanded to treat other solid tumors. 

There are currently numerous CTs of TILs for diverse 

solid cancer types (advanced breast cancer, metastatic 

cholangiocarcinoma, melanoma, cervical cancer, and 

colorectal cancer) that have remarkable therapeutic 

benefits (54). A phase I CT involving the combo of 

TILs, IL-2, and pembrozulimab produced an effective 

response in metastatic NSCLC (55). TILs therapy has 

a better safety profile than other ACTs, and unlike other 

ACTs, it has also shown greater potential in treating 

solid tumors (1). 

TILs therapy is faced with many challenges, which are 

being mitigated with available technology and novel 

strategies. Few TILs identify autologous tumor cells; 

some TILs are dysfunctional with high expression of 

inhibitory molecules, while others have low affinity for 

tumor sites (56). With a greater understanding of cell 

composition, sequencing technologies, and the utility 

of gene editing, the ability to modify and improve TILs 

harvesting, sorting, expansion, efficacy, and safety has 

greatly improved (56). Strategies aimed at countering 

immunosuppression and improving TILs function in 

CTs include the use of recombinant safer IL-2, 

knockout of transforming growth factor-β (TGF-β) 

receptor-2 in TILs using CRISPR/Cas9, and knockout 

of TILs negative regulators such as cytokine-induced 

SH2 protein (CISH), cbl-b, and AKT1/2 (57-62). 

Specific phenotypes of tumor-reactive TILs 

(possessing PD-1, CD39, and CD103) are being 

targeted to improve tumor immune responses of TILs 
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(63). Studies assessing the engineering of TILs to 

produce IL-12 (which improves antitumor response) in 

small quantities are in different phases of CTs, to 

particularly determine the safety of this approach (64). 

Combining TILs with oncolytic viral therapy helps 

attract T-cells (TILs) to the TME; two studies have 

confirmed the effectiveness of this strategy in mouse 

models (65,66). The efforts put into addressing the 

difficulties encountered in TIL therapy are remarkable. 

T-cell Receptor Engineered T-cells 

T-cell receptor (TCR) identifies antigens attached to 

MHC on cells or phagocytes and initiates T-cell 

effector functions. TCRs are either αβ TCRs or γδ 

TCRs, depending on the peptide chain combination 

(67). Some TCRs are specific to certain tumor antigens; 

the concept of TCR-T-cell therapy is based on 

transferring tumor-antigen TCR gene sequence onto 

other T-cells through genetic modifications; this 

confers the engineered T-cells with the capacity of 

targeting and eliminating cells that possess that tumor 

antigen (68). These TCRs are isolated from high 

affinity TILs or healthy T-cells induced with tumor 

antigens (67). Unlike conventional CAR-T-cells 

(which target only extracellular antigens), TCR-T-

cells, can also target intracellular antigens owing to 

their recognition of antigens bound to MHC I/II (69). 

The FDA has not granted approval for any TCR-T-cell 

therapy; most CTs involving TCR-T are either in phase 

I/II. Fatal cross-reactivity of TCR-T cells with similar 

or even dissimilar antigens, insufficient T cell 

persistence, a paucity of suitable TCR-T antigens, and 

the hostile TME are some of the obstacles hindering the 

emergence of TCR-T-approved therapies. The TCR-T-

cell therapies currently in CTs mainly target NY-ESO-

1, with many encouraging outcomes (1). Increased 

TCR-T-cells tumor infiltration, proliferation, and 

effectiveness were observed in an advanced soft tissue 

sarcoma treatment in a phase I trial using TCR-T cells 

in combination with a nanoparticle peptide vaccine to 

target NY-ESO-1 (70). Melanoma antigens recognized 

by T cells-1 (MART-1), MAGE-A3, MAGE-A4, 

MAGE-A10, gp100, WT1, E7, and E6 are some of the 

other targets being explored in CTs (71). A new gene 

editing technique simultaneously swaps the initial TCR 

for the new one, improving the speed of clinical TCR-

T production (72). This technique has already found 

application in the clinical setting (72). TCR-T has been 

observed in CTs to target similar antigens or tumor-

associated antigen (TAA) on normal tissues, resulting 

in toxicity. A thorough preclinical assessment of TAA 

and the HLA is mandatory to prevent adverse events 

(71). 

CAR-T-cell Therapy 

Chimeric antigen receptors (CARs) are engineered 

surface receptors that target a specific antigen. They are 

usually attached to T-cells, but they have also found use 

in NK cells and macrophages (73). Since they were first 

introduced, CARs have undergone and are still 

undergoing various optimizations to optimize their 

safety and effectiveness. They have the ability to bind 

to antigens in the absence of MHC molecules (74). 

Additionally, CARs blend T-cell regenerative and 

effector functions and the antigen-binding capacity of 

mAbs (75). CAR-T cells identify varying forms of 

tumor antigens (proteins, glycolipids, and 

carbohydrates), unlike conventional TCRs that 

recognize only peptides (73). In contrast to 

conventional cancer therapies like chemotherapy and 

radiation, CAR-T-cell therapy is a compelling 

substitute because of how specifically it attacks tumors 

(76). CARs possess the following main domains: the 

extracellular antigen binding domain (usually a 

modified mAb); the hinge region (which determines 

the length of the antigen binding domain and provides 

flexibility); the transmembrane domain (essential for 

CAR stability and surface expression); and the 

intracellular domain (involved in intracellular signaling 

and co-stimulation) (77). All four domains are essential 

in determining the efficiency of CAR-T-cell therapy; 

these domains are constantly optimized for greater 

potency and therapeutic effect (78). The intracellular 

domain divides CARs into five progressive 

generations, targeted at optimizing their function (79-

81). The signaling pathways, functional capabilities, 

effectiveness, and safety of CAR-T-cell therapy are 

influenced by their composition and architecture 

(Figure 2). 
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Figure 2. CAR-T-cell production, delivery methods, and mechanism of action (75).  

The FDA has granted approval to six CAR-T-cell 

therapies for heamatological cancer; these therapies are 

mostly used as second-line or last resort treatments 

because of their high toxicity. Recent modifications 

have improved the safety and effectiveness of CAR-T-

cell therapies, thereby expanding their range of use, 

prolonging remission, and improving survival 

outcomes. Ciltacabtagene autoleucel was granted FDA 

approval in 2022 for usage in relapsed multiple 

myeloma patients (82). The CAR-T-cell possesses two 

single-domain antibodies that target BCMA on 

myeloma cells (82). Approved therapies are shown in 

Table 1. Most of these therapies target either BCMA or 

CD19. Cytopenia and hypogammaglobulinaemia are 

the two prominent long-term toxic effects seen in 

approved CAR-T-cell therapies, while cytokine release 

syndrome (CRS) and neurotoxicity driven by immune 

effector cells are the prominent acute toxicities (83). 

CTs exploring CAR-T-cell therapies for non-

haematological cancers are burgeoning, with mixed 

outcomes from initial results. 

Table 1. Approved CAR-T-cell therapies with their brand name, therapeutic use and indications (82,83). 

S/no 
CAR-T-cell 

therapy 

Brand 

name 
Therapeutic use Indications 

1 
Idecabtagene 

vicleucel 
ABECMA Relapsed or refractory Multiple myeloma 

For adult patients, to be used after 

four or more prior lines of therapy. 

2 
Lisocabtagene 

maraleucel 
BREYANZI 

Relapsed or refractory B-cell lymphoma 

and follicular lymphoma 

For adult patients, to be used after 

two or more lines of systemic 

therapy. 

3 
Ciltacabtagene 

autoleucel 
CARVYKTI Relapsed or refractory multiple myeloma 

For patients, to be used after four 

prior lines of therapy. 

4 Tisangenlecleucel KYMRIAH 

Relapsed or refractory B-cell acute 

lymphoblastic leukemia (B-ALL) and 

DLBCL 

For adult patients. 
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5 
Brexucabtagene 

autoleucel 
TECARTUS 

Relapsed or refractory mantle cell 

lymphoma and B-cell precursor acute 

lymphoblastic leukemia 

For adult patients. It can be used 

to treat mantle cell lymphoma in 

other patients. 

6 
Axicabtagene 

ciloleucel 
YESCARTA 

Relapsed or refractory B-cell lymphoma 

and Follicular lymphoma 

For patients, to be used after two 

or more lines of systemic therapy. 

Widespread adoption of CAR-T-cell therapy is 

restricted by some hurdles, which include mutation or 

veiling of tumor antigens, effects on normal tissues that 

express TAA, poor CAR-T-cell tumor invasion, hostile 

TME, and toxicities (84). These issues are being 

addressed with innovative strategies in CTs. Studies 

targeting multiple antigens have demonstrated 

promising efficacy, reducing the chances of tumor 

antigen escape (84). CAR-T-cell extracellular ligand 

domains are also being explored in preclinical and 

clinical studies as an alternative to modified antibody 

domains to increase CAR-T-cell efficacy (85). 

Combination treatment regimens with ICIs, mainly, are 

another vital solution to mitigating the suppressive 

TME. In some studies, CAR-T-cells are genetically 

modified to produce ICIs, significantly improving the 

efficiency of CAR-T-cell therapy (86). Knocking out 

the checkpoint molecule in CAR-T-cells by 

CRISPR/Cas9 is another method being explored in CTs 

(86). CAR-T-cells are also being genetically modified 

to possess their own immunostimulatory and migratory 

cytokines to resist immunosuppressive TME and 

improve T-cell trafficking/tumor infiltration, 

respectively (84). Another method of improving CAR-

T-cell tumor infiltration is direct administration into the 

tumor; this has been trialed in several studies with 

satisfactory outcomes (75). Non-viral vectors (mRNA 

and DNA transposons systems) are being evaluated for 

transducing T-cells with CAR, considering the toxicity 

concerns associated with viral vectors (87). Culture 

expansion techniques lead to some epigenetic changes 

in CAR-T-cells, which affect therapeutic outcomes. 

Effective expansion techniques and less cultivation 

time are some of the ways to mitigate this challenge 

(88). 

In addition, many CTs depend on autologous T-cells as 

the source of CAR-T-cells which is time-consuming 

and technical; the ensuing delay could be fatal for 

patients with aggressive tumors (89). Chemotherapy 

also affects the quantity and quality of autologous T-

cells (90). Allogeneic T-cells provide large numbers of 

fully operational cells and also multivalent CAR-T-cell 

products (89). Despite the advantages of allogeneic 

CAR-T-cells, graft-versus-host disease (GVHD) and 

allorejection limit their clinical applications, but not for 

long (91). Eliminating the donor’s TCR with genetic 

engineering can be utilized to attenuate the GVHD 

(91). All three adoptive T-cell therapies share similar 

challenges; a breakthrough solution addressing one of 

these challenges can be modified and adopted in all T-

cell therapies. 

Oncolytic Virus Therapy 

Oncolytic viruses (OVs) are modified or wild viruses 

that infect and kill cancer cells. They release more 

viruses and toxic substances that destroy cancer cells 

without killing normal cells (92). Mutations in cancer 

cells leave them susceptible to viral infection due to an 

altered antiviral defense system (93). OVs kill infected 

cancer cells through toxic viral activities and numerous 

immune-killing functions (94). The OV alters the cell 

death processes of the tumor cells and uses the cells 

resources for its own survival and reproduction before 

moving on to infect the next tumor cell (95). OVs also 

release pathogen-associated molecular patterns 

(PAMPs) and death-associated molecular patterns 

(DAMPs) to amplify specific antitumor immune 

responses or through the effects of proteins encoded in 

engineered OVs (94). The OVs selected are weakened 

strains or harmless viruses that are capable of infecting 

cancer cells and stimulating the immune system (96). 

OVs promote inflammation in the tumor, which is an 

excellent way of attracting and activating immune 

cells. Phagocytes engulf tumor antigens and present 

them to T-cells, thereby activating T-cell antitumor 

activity (97). CTs on OVs or combination therapies 

(especially with ICIs) are increasing due to the 

therapy’s safe profile. In Japan, Teserpaturev, a 

recombinant oncolytic herpes simplex virus type-1 

(HSV-1), was granted provisional regulatory approval 

for stereotactic intratumoral therapy of patients with 

inoperable glioma (97). Approval has been granted to 
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four OVs in various countries, but talimogene 

laherparepvec (T-VEC) is the sole universally 

authorized OV therapy. It received approval in 2015 for 

usage in recurrent melanoma patients, but it is still 

being optimized and trialed for use in other cancers 

(98). Telomelysin (monotherapy and combinational 

therapy) for head and neck cancer patients is another 

OV in phase II CT in the United States of America but 

has been approved for use in Canada and the Asia-

pacific region (98). Telomelysin is an adenoviral OV 

that possesses the human telomerase reverse 

transcriptase gene (hTERT) promoter, which is 

prominent in cancer cells (99). Canerpaturev, a mutant 

HSV-1, is another OV that awaits FDA approval; its’ 

efficacy at eliciting an immune response and 

destroying tumor cells is well documented in several 

studies (100). OVs are also engineered to act as viral 

vectors. Nadofaragene firadenovec-vncg (Adstiladrin), 

an adenoviral vector for gene therapy (containing 

Interferon-α2b gene) was granted FDA approval in 

December 2022 for use in non-muscle-invasive bladder 

cancer patients (101). Many other viral vectors are at 

different stages of CTs. Genetic engineering of OVs 

has increased the possibilities and potential of OVs 

therapy. The modifications include the surface display 

of antitumor antibodies, the incorporation of 

immunomodulatory genes (97) and the introduction of 

cell death-inducing factors. Arakai et al. showed that 

Ad OBP-702, an engineered OV expressing p53, 

enhanced ICD (102). Recombinant Newcastle disease 

virus (NDV), NDV-MIP3α equipped with the 

macrophage inflammatory protein-3α (MIP-3α) 

enhanced tumor killing as well as improved the 

maturation and stimulation of dendritic cells (DCs) 

(103), 4-1BBL, a T-cell immunostimulator 

incorporated into the VACV/MVA vaccine, enhanced 

CD8 T-cell activation and also destroyed tumor cells 

(104). OVs penetrate solid tumors, which is an 

important advantage as it improves the efficacy of other 

immunotherapies, which are usually ineffective against 

solid tumors. The few challenges encountered with 

OVs therapy include attacks on OVs by the immune 

system, safety concerns, an insufficient immune 

response, OV delivery systems, and OV tumor 

penetration (105). These challenges would have to be 

addressed before widespread adoption and clinical 

usage of OVs materialize. 

Cancer Vaccine 

Vaccines are molecules or organisms that stimulate the 

immune system to provide protection against a 

particular antigen or organism (106). In 1980, the 

inaugural cancer vaccine was devised, comprising 

cancer cells and extracts (106). Cancer vaccines 

artificially expose the immune system to cancer 

antigens, thereby priming the body’s defenses against 

future exposure to that antigen (107). The human 

papillomavirus (HPV) vaccine and the hepatitis B virus 

(HBV) vaccine are the two approved prophylactic 

cancer vaccines. They avert HPV and HBV infection, 

which are associated with an incidence of cervical and 

hepatic cancer, respectively (107). Bacillus calmette-

guerin (BCG) vaccine, which is used for tuberculosis, 

has been approved for bladder cancer, while 

Sipuleucel-T helps treat prostate cancer (107). Both 

therapeutic and prophylactic vaccines have limited uses 

considering the multiplicity and plasticity of cancer 

antigens and the fact that the immune system they aim 

to stimulate is easily evaded or repressed by tumors. 

Cancer vaccine research was considered a failure by 

some, but there has been renewed interest in the use of 

neoantigens in cancer vaccines. There are many forms 

of cancer vaccines (peptide-based, nucleic acid, and 

DC vaccines) based on neoantigens in CTs. Peptide-

based vaccines are specific, cost-friendly, and safe, 

with many studies exploring its utility, one recent study 

showcased the inducement of antitumor T-cell immune 

responses in NSCLC models treated with personalized 

peptide vaccine (108). In a single-patient study, the 

administration of DNAJB1-PRKACA-peptide vaccine 

with a poly-ADP-ribose polymerase inhibitor induced 

a specific and efficient T-cell response against 

DNAJB1-PRKACA, the oncogenic driver in 

fibrolamellar hepatocellular carcinoma (109). There 

was no relapse in the patient 21 months after 

vaccination (109), which is remarkable. The main 

challenge with peptide vaccines is moderate 

immunogenicity (110). Recent studies have made 

headway in solving this challenge with the conjugation 

of nanoparticles or immunostimulatory adjuvants (heat 

shock protein 70, C-terminal of diphtheria toxin) with 

the vaccine, and the results from the CTs are impressive 

(110). Nucleic acid vaccines are relatively cheap; they 

also induce cellular and humoral immunity, but the 

immune response induced is disappointing most of the 

513 



P. Yiran Ntasin, et al.                                                              Journal of Current Oncology and Medical Sciences 

 

time. Personalized DNA and RNA vaccines are being 

explored by researchers with modifications to improve 

their formulation and efficacy. The success of SARS-

CoV-2 mRNA vaccines has led to renewed interest in 

mRNA solutions for cancer. Over 30 mRNA solutions 

are in different stages of CTs with mixed initial 

outcomes (111). BNT112, encoding 5 prostate-specific 

antigens, recorded positive immune outcomes in 

metastatic castration-resistant prostate cancer 

(mCRPC) from initial data in phase I/IIa CT (112). 

BNT121, BNT122, and CV9201 are other mRNA 

vaccines inducing favorable immunological responses 

in CT (113). It should be noted that a good number of 

mRNA vaccines do not elicit a significant 

immunological response (111). As with other cancer 

immunotherapy solutions, combination therapy 

enhances immune responses. mRNA encoding immune 

costimulatory molecules, Toll-like receptor (TLR)-4, 

and TAA incorporated into dendritic cells administered 

with ipilimumab, a mixture identified as Trimix DC-

MEL, elicited robust T-cell responses (particularly 

CD8 T-cells) in melanoma patients during phase II CT 

(113). DC-based vaccines induce potent immune 

responses but are expensive to produce. DCs are 

harvested and pulsed with neoantigens. mRNA or 

peptides can be incorporated into the DC and infused 

into cancer patients. Other DC fusion techniques 

include DC-tumor fusion and electrofusion. Several 

mRNA-loaded DC vaccines in CTs elicit potent 

antitumor T-cell immune responses with an excellent 

safety profile in various cancers (114). Reduced tumor 

antigen exposure through mutation or low expression, 

the heterogeneous nature of tumors/tumor antigen, 

appropriate vaccine platforms, and insufficient 

immunostimulation are some of the challenges 

encountered in cancer vaccine development (115). 

These challenges do not deter research aimed at 

optimizing cancer vaccines for safe and efficient cancer 

therapy (Figure 3). 

 

 

Figure 3. Improving immune cell trafficking and migration to tumours. The hostile tumour microenvironment is one of the major 

challenges limiting the efficacy of cancer immunotherapies. A summary of the various strategies employed to mitigate these 

challenges is outlined in the diagram (1,110). 
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Conclusions 

For years now, treatment options for cancer conditions 

have consistently gained much attention, with 

increased life expectancy among affected patients and 

a better understanding of immunosurveillance against 

cancer cells. Cancer immunotherapy has revolutionized 

the treatment of different types of cancer conditions 

with remarkable success. Several cancer 

immunotherapy regimens have been developed, 

including adoptive T-cell therapy, immune checkpoint 

inhibitors, antibody therapies, oncolytic virus therapy, 

and cancer vaccines, with significant breakthroughs 

and concomitant increases in patient’s quality of life 

and survival. However, it is important to note that 

patient responsiveness to immunotherapy does not cut 

across all patients due to differences in human genetic 

composition, tumor antigen heterogeneity, stage of the 

cancer, and the fitness of the immune system. 

Considering this, further research is ongoing on 

improving the effectiveness of immunotherapies and 

reducing their toxicity concerns. It is worth noting that 

the next generation of cancer immunotherapies will 

greatly change the status quo in the battle against 

cancer progression and metastasis. 

Limitations of the study 

1. The study excluded other non-conventional 

immunotherapies including cytokine cancer 

immunotherapy. 

2. Emerging technologies intended to enhance cancer 

immunotherapy delivery were not covered in the 

study. 
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